Integrate x*ln(x) with respect to x

First identify that integration by parts is required. Then seperate the integration so u = ln(x)     dv/dx = x then, du/dx = 1/x  v = (1/2)x^2 . And using the integration by parts formula with these substitutions: ∫x*ln(x) dx = ((1/2)x^2)*ln(x)- ∫(1/2)x dx = ((1/2)x^2)*ln(x)- (1/4)x^2 +c

AS
Answered by Ana S. Maths tutor

3888 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

The curve C has equation y = (x^2 -4x - 2)^2. Point P lies on C and has coordinates (3,N). Find: a) the value of N. b) the equation of the tangent to C at the point P, in the form y=mx+c where m and c are constants to be found. c) determine d^2y/dx^2.


What is the method used for differentiation?


(https://qualifications.pearson.com/content/dam/pdf/A-Level/Mathematics/2013/Exam-materials/6666_01_que_20160624.pdf) Question 6.(i)


How would you differentiate f(x) = 2x(3x - 1)^2 using the chain rule?


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences