Integrate x*ln(x) with respect to x

First identify that integration by parts is required. Then seperate the integration so u = ln(x)     dv/dx = x then, du/dx = 1/x  v = (1/2)x^2 . And using the integration by parts formula with these substitutions: ∫x*ln(x) dx = ((1/2)x^2)*ln(x)- ∫(1/2)x dx = ((1/2)x^2)*ln(x)- (1/4)x^2 +c

AS
Answered by Ana S. Maths tutor

4071 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Find the roots of y=x^{2}+2x+2


Given y(x+y)=3 evaluate dy/dx when y=1


Differentiate y= (2x+1)^3. [The chain rule]


Find the integral of e^3x/(1+e^x) using the substitution of u=1+e^x


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning