Integrate x*ln(x) with respect to x

First identify that integration by parts is required. Then seperate the integration so u = ln(x)     dv/dx = x then, du/dx = 1/x  v = (1/2)x^2 . And using the integration by parts formula with these substitutions: ∫x*ln(x) dx = ((1/2)x^2)*ln(x)- ∫(1/2)x dx = ((1/2)x^2)*ln(x)- (1/4)x^2 +c

AS
Answered by Ana S. Maths tutor

4208 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Differentiate y= 2^x


Express 4sin(x)+6cos(x) in terms of Rsin(x+a) where R and a are constants to be determined (a should be given in rad).


How do I find the roots of a quadratic equation?


dy/dx= 2x/2 - 1/4x, what is d2y/dx2?


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning