A curve is defined by the parametric equations x=t^2/2 +1 and y=4/t -1. Find the gradient of the curve at t=2 and an equation for the curve in terms of just x and y.

To find the gradient of the curve at t=2 we need to find an expression for dy/dx and then substitute in for t=2. We can make use of the chain rule to find this expression because dy/dx = (dy/dt)/(dx/dt) and these derivates are easier to calculate. From the parametric equations, dx/dt = t and dy/dt = -4/t^2. Therefore dy/dx = (-4/t^2)/t = -4/t^3. Now t=2 can be substituted in to find that the gradient at this point is -1/2.

In order to find an equation for the curve in terms of just x and y, we need to eliminate the t variable. Rearranging the y equation tells us that t=4/(y+1). Now this can just be substituted into the x equation to give x=8/(y+1)^2 + 1.

SC
Answered by Steven C. Maths tutor

8498 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Solve the simultaneous equation x+y=11(1), x^2+y^2=61 (2)


Integrate the following expression with respect to x by parts: (2*x)*sin(x)


Two lines have equations r = (1,4,1)+s(-1,2,2) and r = (2,8,2)+t(1,3,5). Show that these lines are skew.


How do I find the area under a curve between two points?


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning