A curve is defined by the parametric equations x=t^2/2 +1 and y=4/t -1. Find the gradient of the curve at t=2 and an equation for the curve in terms of just x and y.

To find the gradient of the curve at t=2 we need to find an expression for dy/dx and then substitute in for t=2. We can make use of the chain rule to find this expression because dy/dx = (dy/dt)/(dx/dt) and these derivates are easier to calculate. From the parametric equations, dx/dt = t and dy/dt = -4/t^2. Therefore dy/dx = (-4/t^2)/t = -4/t^3. Now t=2 can be substituted in to find that the gradient at this point is -1/2.

In order to find an equation for the curve in terms of just x and y, we need to eliminate the t variable. Rearranging the y equation tells us that t=4/(y+1). Now this can just be substituted into the x equation to give x=8/(y+1)^2 + 1.

SC
Answered by Steven C. Maths tutor

8430 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

The curve C has the equation 4x^2 - y^3 - 4xy + 2y = 0 . The point P with coordinates (-2, 4) lies on C. Find the exact value of dy/dx at the point P.


Find the coordinates of the stationary point on the curve y=2x^2+3x+4=0


If f(x) = (3x-2) / x-5 x>6, find a.) ff(8) b.) the range of f(x) c.) f^-1(x) and state its range.


Two masses A and B, 2kg and 4kg respectively, are connected by a light inextensible string and passed over a smooth pulley. The system is held at rest, then released. Find the acceleration of the system and hence, find the tension in the string.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences