integrate by parts the equation dy/dx = (3x-4)(2x^2+5).

The equation we use to integrate by parts is

y = uv - v(du/dx) dx + c

so we separate dy/dx into u=(3x-4) and dv/dx=(2x2+5)

however we still need to find du/dx and v,

by differentiating u (bring the power down, make the power one less) we can find du/dx therefore du/dx = 3

to integrate dv/dx we need to add one to the power then divide by the new power so v = 2/3x3+5x

we can then substitute all of our values into the equation:

y = (3x-4)(2/3x3+5x) - ∫ 3(2/3x3+5x) dx +c

y = (3x-4)(2/3x3+5x) - ∫ 2x3+15x dx +c

y = (3x-4)(2/3x3+5x) - (1/2x4+15/2x2) +c

AH
Answered by Abby H. Maths tutor

6163 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

How do you factorise a quadratic equation?


Edexcel C1 2015 Q10. A curve with equation y = f (x) passes through the point (4, 9). Given that f′(x)=3x^(1/2)-9/(4x^(1/2))+2. Find f(x), giving each term in its simplest form.


The arithmetic series is given by (k+1)+(2k+3)+(3k+5)+...+303. a)Find the number of term in the series in terms of k. b) Show that the sum of the series is given by (152k+46208)/(k+2). c)Given that S=2568, find k.


Let f(x) = x^3 -2x^2-29x-42. a)Show (x+2) is a factor b)Factorise f(x) completely


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning