How do I integrate x/(x^2 + 3) ?

To solve this you need to integrate by substitution. You can spot this because the differential of the bottom of the fraction is a multiple of the top part, showing this quickly; if u = x + 3 (the bottom part) then du/dx = 2x, which is a multiple of 2 greater than x (the top part). So if we continue using u = x2 + 3 by substituting that into the equation as well as substituting the dx term (at the end of the integral) by using a rearrangement of du/dx = 2x [dx = du/2x]. Thus we are left with: Integral of (x/u).(du/2x), this means we can cancel the x terms out leaving us with (1/2). Integral 1/u.du which will equal (1/2) ln(u), so substituting out u finally gives us (1/2) ln( x2 + 3).

KM
Answered by Knox M. Maths tutor

12513 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Given the function f(x) = (x^2)sin(x), find f'(x).


How do I find the turning points of a curve?


Given that 2log2(x+15) -log2(x) = 6, show that x^2-34x+225=0


Prove the identity: (sinx - tanx)(cosx - cotx) = (sinx - 1)(cosx - 1)


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning