How do I integrate x/(x^2 + 3) ?

To solve this you need to integrate by substitution. You can spot this because the differential of the bottom of the fraction is a multiple of the top part, showing this quickly; if u = x + 3 (the bottom part) then du/dx = 2x, which is a multiple of 2 greater than x (the top part). So if we continue using u = x2 + 3 by substituting that into the equation as well as substituting the dx term (at the end of the integral) by using a rearrangement of du/dx = 2x [dx = du/2x]. Thus we are left with: Integral of (x/u).(du/2x), this means we can cancel the x terms out leaving us with (1/2). Integral 1/u.du which will equal (1/2) ln(u), so substituting out u finally gives us (1/2) ln( x2 + 3).

KM
Answered by Knox M. Maths tutor

12511 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Show that the equation 5sin(x) = 1 + 2 [cos(x)]^2 can be written in the form 2[sin(x)]^2 + 5 sin(x)-3=0


Express 2cos(x) + 5sin(x) in the form Rsin(x + a) where 0<a<90


I'm trying to integrate f(x)=sin(x) between 0 and 2 pi to find the area between the graph and the axis but I keep getting 0, why?


Consider the curve y=x/(x+4)^0.5. (i) Show that the derivative of the curve is given by dy/dx= (x+8)/2(x+4)^3/2 and (ii) hence find the coordinates of the intersection between the left vertical asymptote and the line tangent to the curve at the origin.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning