Differentiating equations of the type ln[f(x)]

To solve such equations we take advantage of log lawes to simplify the problem .

E.g

ln[sqrt(1-x2)] = ln[(1-x2)1/2] = 1/2ln[1-x2]

After simplifing the problem we can differentiate with respect to x 

y = 1/2ln[1-x2]

 let f(x) = 1-x2

Use the Chain rule 

dy/dx = dy/df * df/dx 

dy/df = 1/(2*f(x))

df/dx = -2x

dy/dx = - 1/2[  2x/( 1-x2  ) ]

Provides a good practice of chain rule. differentiating logarithms and properties of logs.

MS
Answered by Mousa S. Maths tutor

3527 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

A ball is released on a smooth ramp at a distance of 5 metres from the ground. Calculate its speed when it reaches the bottom of the ramp.


Solve the simultaneous equation x+y=11(1), x^2+y^2=61 (2)


Maths


Find the stationary point of the function f(x) = x^2 +2x + 5


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning