How do I simplify (1 / [1 + cos(x) ] ) + (1 / [1 - cos(x) ] )?

In order to add the fractions together, we must have a common denominator of the fractions. The simplest way to do this is to make the denominators of the equations the product of the original two denomniators. In other words, the denominator for both fractions should be  (1 + cos(x) ) (1 - cos(x) ). To do this, we can multiply each fraction by an equation equal to 1 which gives the correct denominator (because an equation multiplied by 1 is equal to the original equation). Hence, we multiply the first fraction by (1 - cos(x) ) / (1 - cos(x) ), and the second by (1 + cos(x) ) / (1 + cos(x) ). This will allow us to add both fractions together as we would with non-algebraic fractions and gives us (1 - cos(x) + 1 + cos(x) ) / ( [1 + cos x] [1 - cos x] )  which is simplified to 2 / (1 - cos2(x) ). We should remember the identity 1 - cos2(x) = sin2(x) from earlier in the course but the proof is trivial if it is needed. So, our equation can be simplified to 2 / sin2(x). From here you should be able to see this is equal to 2 * (1 / sin2(x)) which is the same as 2 * cosec2(x). This cannot be simplified any further so our final answer is 2cosec2(x).

SC
Answered by Simon C. Maths tutor

13298 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Express x^2-4x+9 in the form (x-p)^2+q where p and q are integers


y=4x^3+6x+3 so find dy/dx and d^2y/dx^2


Given x=Sqrt(3)sin(2t) and y=4cos^2(t), where 0<t<pi. Show that dy/dx = kSqrt(3)tan(2t).


Let C : x^2-4x+2k be a parabola, with vertex m. By taking derivatives or otherwise discuss, as k varies, the coordinates of m and, accordingly, the number of solutions of the equation x^2-4x+2k=0. Illustrate your work with graphs


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning