Solve the simultaneous equations (1) x + 3y = 7 and (2) 2x + y = 4

It's impossible to solve an equation with two unknowns (x and y) so we must find a way to get rid of either x or y before solving an equation. Using substitution rearrange the equation 1 so x is the only term on one side of the equation by subtracting 3y from both sides leaving: x = 7 - 3y. Substitute that into the second equation to get 2(7 - 3y) + y = 4 Expand the brackets 14 -5y = 4 which rearranges to 5y = 10 so y = 2 Substitute y = 2 back into equation 2 to get 2x + 2 = 4 which gives x = 1 Using elimination multiply equation (1) by 2: 2x + 6y =14. Both equations now contain 2 lots of x Subtract equation 2 from equation 1 to eliminate x 5y = 10 so y = 2 Substitute y = 2 into equation 2 2x + 2 = 4 so x = 1

SS
Answered by Simon S. Maths tutor

4441 Views

See similar Maths GCSE tutors

Related Maths GCSE answers

All answers ▸

If the area of a sector of a circle is 3*pi cm^2 and the circle has a radius of 6cm, what is the angle of the sector?


Please factorise fully: 2a^2 + 6a


Solve the equation (x+2)/(x-3)=(x-6)/(x+1) for x.


Let f ( x ) = 15 /x and g ( x ) = 2 x − 5 Find fg(4), gf(-30) and give the expression for gf(x)


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning