f(x)=(2x+1)/(x-1) with domain x>3. (a)Find the inverse of f(x). (b)Find the range of f(x). (c) g(x)=x+5 for all x. Find the value of x such that fg(x)=3.

(a) Let y=f(x). Then y = (2x+1)/(x-1). Rearrange the equation to get x in terms of y to obtain the inverse function. This gives x=(1+y)/(y-2). So the inverse of f is f-1(x)=(1+x)/(x-2) (b) Drawing a graph of f(x) gives a vertical asymptote at x=1 and a horizontal asymptote at y=2. This is because for large values of x, f(x) tends to 2x/x = 2. For values of x>1, the graph shows that f(x)>2. Note that the domain of f(x) is x>3, and f(3) = 3.5. So the range of this function is in fact restricted to 2 (c) Recall from part (a) that f-1(x)=(1+x)/(x-2). By taking f-1 on both sides of the equation fg(x)=3, we get  f-1fg(x)=f-1(3). Note that  f-1f(x)=x so this gives g(x)= f-1(3)=4. So g(x)=x+5=4 giving x= -1.

LA
Answered by Lutfha A. Maths tutor

5040 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

1. A small stone is dropped from a height of 25 meters above the ground. i) Find the time taken for the stone to reach the ground ii) Find the speed of the stone as it reaches the ground


Calculate (7-i*sqrt(6))*(13+i*sqrt(6))


What is the gradient of the function f(x) = 2x^2 + 3x - 7 at the point where x = -2?


How do you find the first order derivative of sin(x) and cos(x) functions?


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning