What is the Product Rule?

The product rule is used when differentiating two functions that are multiplied by eachother. The formula for the product rule is: 

U (dv/dx) + V (du/dx)    where 'dv/dx' is the differential of the function, V.

For example: 

y=(x2 + 3)(2x +5) .... we label the first bracket as U and the second as V.

To find dy/dx we apply the product rule:

U= (x2 + 3)      du/dv= 2x as we differentiate any x variable by bringing the power down to the front and then minusing                                       one from the power)

V= (2x+5)        dv/dx= 2

Therefore, applying the product rule gives: 

(x2 +3)2 + 2x(2x+5) = 4x2 + 10x + 6

AW
Answered by Abbie W. Maths tutor

3189 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

What is y' when y=3xsinx?


Using the binomial theorem, find the coefficient of x^4*y^5 in (x-2y)^9.


How do I integrate cos^2x with respect to x?


The curve C has equation: (x-y)^2 = 6x +5y -4. Use Implicit differentiation to find dy/dx in terms of x and y. The point B with coordinates (4, 2) lies on C. The normal to C at B meets the x-axis at point A. Find the x-coordinate of A.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences