What is the Product Rule?

The product rule is used when differentiating two functions that are multiplied by eachother. The formula for the product rule is: 

U (dv/dx) + V (du/dx)    where 'dv/dx' is the differential of the function, V.

For example: 

y=(x2 + 3)(2x +5) .... we label the first bracket as U and the second as V.

To find dy/dx we apply the product rule:

U= (x2 + 3)      du/dv= 2x as we differentiate any x variable by bringing the power down to the front and then minusing                                       one from the power)

V= (2x+5)        dv/dx= 2

Therefore, applying the product rule gives: 

(x2 +3)2 + 2x(2x+5) = 4x2 + 10x + 6

AW
Answered by Abbie W. Maths tutor

3669 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Differentiate Y = 4X/(X^2+5) and give dy/dx in its simplest form


i) Simplify (2 * sqrt(7))^2 ii) Find the value of ((2 * sqrt(7))^2 + 8)/(3 + sqrt(7)) in the form m + n * sqrt(7) where n and m are integers.


Solve the equation d/dx((x^3 + 3x^2)ln(x)) = 2x^2 + 5x, leaving your answer as an exact value of x. [6 marks]


Find the integral of (x+4)/x(2-x) .dx


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning