Prove 2^n >n for all n belonging to the set of natural numbers

for n=1 2^1=2  2>1 hence true for n=1 assume true for n then 2^n >n we need to show 2^n+1 > n+1 since 2^n >n 2^n+1 >2n =n+n >n+1 for n>1 hence by induction since true for n= 1 and if true for n then true for n+1 the statement is true for all natural numbers

MM
Answered by Matthew M. Maths tutor

3599 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Suppose that you go to a party where everyone knows at least one other person, you get a bit bored and wonder whether there are at least two people which know the same number of people there.


Given that x=ln(t) and y=4t^3,a) find an expression for dy/dx, b)and the value of t when d2y/dx2 =0.48. Give your answer to 2 decimal place.


How to perform integration by substitution. (e.g. Find the integral of (2x)/((4+(3(x^2)))^2)) (10 marks)


Integrate the following fraction w.r.t. x: (sqrt(x^2 + 1)-sqrt(x^2 - 1))/(sqrt(x^4 - 1))


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning