Describe the synaptic transmission of a nerve impulse at the neuromuscular junction

As an action potential arrives at the presynaptic terminal, a depolarisation of the motor neuron membrane occurs which initiates the opening of voltage-gated Ca2+ ion channels - releasing Ca2+ into the neuron to stimulate the release of vesicles containing Acetylcholine. Acetylcholine acts as the neurotransmitter in this context. These vesicles can then bind, and dock to the membrane of the presynaptic neuron with the assistance of SNARE proteins, releasing Acetylcholine into the synaptic cleft. Acetylcholine is then able to diffuse across the synaptic cleft, eventually binding to nicotinic Acetylcholine receptors on the motor end-plate (the post-synaptic membrane). This binding causes a further opening of voltage-gated Na+ ion channels, which cause an influx of Na+, depolarising the membrane. An action potential is then able to be propagated along the sarcolemma as furhter Na+ ion channels are opened.

AB
Answered by Adam B. Biology tutor

7522 Views

See similar Biology A Level tutors

Related Biology A Level answers

All answers ▸

What is the difference between a Eukaryotic and Prokaryotic cell?


Outline the sequence of events following the production of extracellular proteins that leads to their release from the cell. [3]


Explain the Bohr Effect?


How are signals transmitted across the synaptic cleft?


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning