Using complex numbers, derive the trigonometric identities for cos(2θ) and sin(2θ).

When dealing with complex numbers and trigonometric functions, always turn to DeMoivre's Theorem that states [cos(θ)+isin(θ)]n = [cos(nθ)+isin(nθ)]. If we set n=2, the we see a combination of cos(2θ) and sin(2θ) on the right hand side. From here, we can expand the left hand side, just like we would with a normal quadratic expression, giving us: cos2(θ) + 2cos(θ)(isin(θ)) + (isin(θ))2. This can then be simplified to cos2(θ) - sin2(θ) + 2cos(θ)(isin(θ)) as i= -1 by definition. Combining the right hand side and the left hand side gives: cos2(θ) - sin2(θ) + 2cos(θ)(isin(θ)) = cos(2θ)+isin(2θ) We can then equate real and imaginary parts of the equations to give: cos2(θ) - sin2(θ) = cos(2θ) and 2cos(θ)(isin(θ)) = isin(2θ), and therefore 2cos(θ)sin(θ) = sin(2θ).

TK
Answered by Thomas K. Maths tutor

8681 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Why do you differentiate in optimisation questions?


If x^2 + 4x + 3xy + y^3 = 6, find the first derivative.


Integrate sec^2(x)tan(X)dx


a) Solve the following equation by completing the square: x^(2)+ 6x + 1= 0. b) Solve the following equation by factorisation: x^(2) - 4x - 5 = 0 c) Solve the following quadratic inequality: x^(2) - 4x - 5 < 0 (hint use your answer to part b)


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning