Using complex numbers, derive the trigonometric identities for cos(2θ) and sin(2θ).

When dealing with complex numbers and trigonometric functions, always turn to DeMoivre's Theorem that states [cos(θ)+isin(θ)]n = [cos(nθ)+isin(nθ)]. If we set n=2, the we see a combination of cos(2θ) and sin(2θ) on the right hand side. From here, we can expand the left hand side, just like we would with a normal quadratic expression, giving us: cos2(θ) + 2cos(θ)(isin(θ)) + (isin(θ))2. This can then be simplified to cos2(θ) - sin2(θ) + 2cos(θ)(isin(θ)) as i= -1 by definition. Combining the right hand side and the left hand side gives: cos2(θ) - sin2(θ) + 2cos(θ)(isin(θ)) = cos(2θ)+isin(2θ) We can then equate real and imaginary parts of the equations to give: cos2(θ) - sin2(θ) = cos(2θ) and 2cos(θ)(isin(θ)) = isin(2θ), and therefore 2cos(θ)sin(θ) = sin(2θ).

TK
Answered by Thomas K. Maths tutor

8684 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

What are the stationary points of the curve (1/3)x^3 - 2x^2 + 3x + 2 and what is the nature of each stationary point.


Find the first three terms in the binomial expansion of (8-9x)^(2/3) in ascending powers of x


An ellipse has the equation (x^2)/4 + (y^2)/9 = 1. Find the equation of the tangent at (-6/5 , 12/5)


Show that 2tan(th) / (1+tan^2(th)) = sin(2th), where th = theta


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning