Find where the curve 2x^2 + xy + y^2 = 14 has stationary points

d/dx (xy) = x dy/dx + y 

d/dx (y^2) = 2y dy/dx [This is from the chain rule]

So, d/dx (2x^2 + xy + y^2 = 14) 

=> 4x + x dy/dx + y + 2y dy/dx = 0

set dy/dx = 0 as stationary point has gradient 0

Obtains 4x+y=0

y=-4x

Sub this back into our original equation

14x^2 = 14

x^2 = 1

This is only satisfied by +1 and -1

When x=1 y=-4, when x=-1 y=4

So stationary points are (1,-4) and (-1,4)

MH
Answered by Matthew H. Maths tutor

8709 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

how can differentiate using the product and chain rule? e.g y=(4x+1)^3(sin2x), find dy/dx.


Find f'(x) and f''(x) when f(x) = 3x^2 +7x - 3


differentiate the function (x^2 +5/x + 3) with respect to x


If y = ln (x+1) sin x , find dy/dx


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning