x = t^3 + t, y = t^2 +1, find dy/dx

dy/dx = dy/dt x dt/dx

x = t3 + t

dx/dt = 3t2 +1

y = t2 +1

dy/dt = 2t

dy/dx = 2t x (1 / (3t2 +1) )

= 2t / (3t2+ 1)

SK
Answered by Sukhwinder K. Maths tutor

5615 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Find the coordinates of the points where the lines y=x^2-5x+6 and y=x-4 intersect.


Curve D has equation 3x^2+2xy-2y^2+4=0 Find the equation of the tangent at point (2,4) and give your answer in the form ax+by+c=0, were a,b and c are integers.


Find D when 8x^3-12x^2-2x+D is divided by 2x+1 when the remainder is -2


Differentiate cos(2x)/(x) with respect to x


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences