x = t^3 + t, y = t^2 +1, find dy/dx

dy/dx = dy/dt x dt/dx

x = t3 + t

dx/dt = 3t2 +1

y = t2 +1

dy/dt = 2t

dy/dx = 2t x (1 / (3t2 +1) )

= 2t / (3t2+ 1)

SK
Answered by Sukhwinder K. Maths tutor

5672 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

How would I sketch the graph sin(x) + sin(2x - π/2) in my exam?


Work out the equation of the normal to the curve y = x^3 + 2x^2 - 5 at the point where x = -2. [5 marks]


A curve is defined by the equation y^2 - xy + 3x^2 - 5 = 0. Find dy/dx.


A girl kicks a ball at a horizontal speed of 15ms^1 off of a ledge 20m above the ground. What is the horizontal displacement of the ball when it hits the ground?


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences