x = t^3 + t, y = t^2 +1, find dy/dx

dy/dx = dy/dt x dt/dx

x = t3 + t

dx/dt = 3t2 +1

y = t2 +1

dy/dt = 2t

dy/dx = 2t x (1 / (3t2 +1) )

= 2t / (3t2+ 1)

SK
Answered by Sukhwinder K. Maths tutor

6026 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Given two functions x = at^3 and y = 4a, find dy/dx


How do you multiply matrices together?


Find the exact solution of the equation in its simplest form: 3^x * e^4x = e^7.


The equation x^3 - 3*x + 1 = 0 has three real roots; Show that one of the roots lies between −2 and −1


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning