How do you use the product rule?

The product rule is used to find the differential of expressions of the form y = u(x)*v(x) where u(x) and v(x) are functions in terms of x. An example of such an expression could be y = x2sin(x). The product rule states that for y = u(x)*v(x), the first derivative is given by y' = u'(x)v(x) + u(x)v'(x) (the symbol ' refers to the first derivative). Applying this to our example, we first need to define what u(x) and v(x) are. We could let u(x) = x2 and v(x) = sin(x). We could have also defined v(x) = x2 and u(x) = sin(x). The order in this case doesn't matter as long as one is consistent, but we will be continuing with our first definition. We now need to find what u'(x) and v'(x) are. As u(x) = x2, u'(x) = 2x . Also, v(x) = sin(x), v'(x) = cos(x) By applyin the formula y' = u'(x)v(x) + u(x)v'(x) we can therefore find that y' = 2x(sin(x)) + x2(cos(x)).

LL
Answered by Laura L. Maths tutor

3304 Views

See similar Maths GCSE tutors

Related Maths GCSE answers

All answers ▸

Show that AB is not parallel to CD.


Solve the simultaneous equations: 4x+y=25 and x-3y=16


How do you multiply out brackets


A circle has the equation x^2 + y^2 = 25. There is a point P on this circle with coordinates (4,3). A line is drawn tangental to the circle at point P. This line crosses the x axis at point Q. Find the co-ordinates of Q.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences