How do you use the product rule?

The product rule is used to find the differential of expressions of the form y = u(x)*v(x) where u(x) and v(x) are functions in terms of x. An example of such an expression could be y = x2sin(x). The product rule states that for y = u(x)*v(x), the first derivative is given by y' = u'(x)v(x) + u(x)v'(x) (the symbol ' refers to the first derivative). Applying this to our example, we first need to define what u(x) and v(x) are. We could let u(x) = x2 and v(x) = sin(x). We could have also defined v(x) = x2 and u(x) = sin(x). The order in this case doesn't matter as long as one is consistent, but we will be continuing with our first definition. We now need to find what u'(x) and v'(x) are. As u(x) = x2, u'(x) = 2x . Also, v(x) = sin(x), v'(x) = cos(x) By applyin the formula y' = u'(x)v(x) + u(x)v'(x) we can therefore find that y' = 2x(sin(x)) + x2(cos(x)).

LL
Answered by Laura L. Maths tutor

3861 Views

See similar Maths GCSE tutors

Related Maths GCSE answers

All answers ▸

Factorise 15r+10


In triangle XYZ: XZ = 10 cm; YZ = 8 cm; cos Z = 1/8. Calculate the length of XY.


Factorize x³-x


A box contains 7 caramel doughnuts. They have masses of 56 g, 67 g, 45 g, 56 g, 58 g, 49 g and 50 g. Find the median, mean and mode values of these masses. Bonus: What mass of doughnut could be added to the box to make the mean mass = 61 g.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning