How do I find the derivative of two functions multiplied by each other?

To find the derivative of two functions multiplied by each other we would use the product rule.

The product rule: (fg)'(x) = f '(x).g(x) + f(x).g'(x)

First we need to split our function into the two parts that are multiplied by eachother, and label these f and g. For example, h(x) = sin(x)(2x + 1)

For this we would label f(x) = sin(x) and g(x) = (2x + 1)

Now we need to find the derivatives of these, to use in the above formula:

f '(x) = cos(x)  g'(x) = 2

So then we put these together in the formula above to get our answer as follows:

h'(x) = cos(x)(2x + 1) + 2sin(x)

ES
Answered by Eleanor S. Maths tutor

3757 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

How do I differentiate a trigonometric function for something that is not just a single variable (e.g. d/dx (sin(3x))?


Why is sin(t)^2 + cos(t)^2 = 1 true for all t?


Find the determinant of a 2*2 matrix.


Find dy/dx of the equation y=x^2 ln⁡(2x^2+1).


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences