A right angle triangle has a base of √8 and a height of (√10+3). Show that the area is equal to 2√5+3√2.

The area of a triangle is equal to 1/2 x base x height, so we can write the equation for this question as: Area = 1/2 x √8 x (√10+3) We can then simplify √8 by writing it as its factors; √8 + √4√2, which equals 2√2. We can write it like this because 4 is a square number so its root is a rational number. We can the rewrite our area equation as: Area = 1/2 x 2√2 x (√10+3) and we can simplify it to Area = √2 x (√10+3) because 1/2 x 2√2 is just 2√2. We can now either expand the equation or play around with the numbers in the bracket to make things easier for ourselves. Lets look at √10. Using the same thing we did for √8, we can rewrite it as its factors; so √10 = √2√5. This will make our expansion much easier: √2 x (√2√5 +3) = √2√5 x √2 + 3 x√2 We can then simplify this complicated looking equation to get the answer we are looking for: Area = 2√5 + 3√2

EH
Answered by Elizabeth H. Maths tutor

4079 Views

See similar Maths GCSE tutors

Related Maths GCSE answers

All answers ▸

Give an example of a real-world system that would be described by a quadratic equation. Explain the significance of the two real roots, a repeated root, and undefined roots. Is there any significance to a positive or a negative answer in your example?


Expand and simplify (x-4)(2x+3y)^2


There are 40 pencils in a box. There are 15 pens in a packet. John gives one pencil and one pen to each person at a conference. He has no pencils or pens left. How many boxes of pencils and how many packets of pens did John buy?


Find x when: (2^x)(e^(3x+1))=10. Give your answer in the form (a + ln(b)) / (c + ln(d)) , where a,b,c,d are integers.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning