Differentiate sin(x)*x^2

Notice that (sin(x))'= cos(x) and (x^2)' = 2x

We use the product rule to differentiate, by noticing the expression is a product. 

so (fxgx)' = f'xgx + fx*g'x

substituting in we get (sin(x)*x^2) = cos(x)*x^2 + sin(x)*2x

DG
Answered by Drenusha G. Maths tutor

3275 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Find the intergral of 2x^5 - 1/4x^3 - 5 with respect to x.


Express 4x/(x^2-9) - 2/(x+3) as a single fraction in its simplest form.


How do I invert a 2x2 square matrix?


integration by parts: x^-2lnx


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning