Differentiate sin(x)*x^2

Notice that (sin(x))'= cos(x) and (x^2)' = 2x

We use the product rule to differentiate, by noticing the expression is a product. 

so (fxgx)' = f'xgx + fx*g'x

substituting in we get (sin(x)*x^2) = cos(x)*x^2 + sin(x)*2x

DG
Answered by Drenusha G. Maths tutor

3068 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Is the trapezium rule an exact method of integration?


A ball is thrown vertically upwards with a speed of 24.5m/s. For how long is the ball higher than 29.4m above its initial position? Take acceleration due to gravity to be 9.8m/s^2.


How do we integrate x^2?


How to translate a function of form y = f(x)


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences