Differentiate sin(x)*x^2

Notice that (sin(x))'= cos(x) and (x^2)' = 2x

We use the product rule to differentiate, by noticing the expression is a product. 

so (fxgx)' = f'xgx + fx*g'x

substituting in we get (sin(x)*x^2) = cos(x)*x^2 + sin(x)*2x

DG
Answered by Drenusha G. Maths tutor

2986 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Differentiate the following: y=(7x^2+2)sinx


Express the fraction (p+q)/(p-q) in the form m+n√2, where p=3-2√2 and q=2-√2.


Differentiate 8x^4 + 2x^2 + 10


A curve, C, has equation y =(2x-3)^5. A point, P, lies on C at (w,-32). Find the value of w and the equation of the tangent of C at point, P in the form y =mx+c.


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences