Solve the simultaneous equations x + y = 1 , x^2 -2xy+y^2=9

So here we want to eliminate one variable so we are only working with either x or y by themself, so to do this we can rearrange the first equation of x+y=1 to x= 1-y. This new equation can therefore be substituted into the second equation to replace all the ‘x’ values. This will create the equation (1-y)^2 -2(1-y)y + y^2 =9. We then expand this expression to get 1-4y+4y^2=9, which can be rearranged to 4y^2-4y-8 = 0. The common factor 4 can be taken out, and we can factorise this expressions into 4(y-2)(y+1)=0. We can calculate that the values of y are y=2 and y=-1. Using the first equation, when y=2, this means that x=-1; and when y=-1, x=2.

BS
Answered by Belinda S. Maths tutor

7477 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

An ellipse has the equation (x^2)/4 + (y^2)/9 = 1. Find the equation of the tangent at (-6/5 , 12/5)


How do I find the reultant force acting on an object sitting on a slope?


Using the product rule, differentiate y=(2x)(e^3x)


Solve the inequality 4x^2​>5x-1


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning