Solve the simultaneous equations x + y = 1 , x^2 -2xy+y^2=9

So here we want to eliminate one variable so we are only working with either x or y by themself, so to do this we can rearrange the first equation of x+y=1 to x= 1-y. This new equation can therefore be substituted into the second equation to replace all the ‘x’ values. This will create the equation (1-y)^2 -2(1-y)y + y^2 =9. We then expand this expression to get 1-4y+4y^2=9, which can be rearranged to 4y^2-4y-8 = 0. The common factor 4 can be taken out, and we can factorise this expressions into 4(y-2)(y+1)=0. We can calculate that the values of y are y=2 and y=-1. Using the first equation, when y=2, this means that x=-1; and when y=-1, x=2.

BS
Answered by Belinda S. Maths tutor

6989 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Find the value of: d/dx(x^2*sin(x))


A curve has equation y = f(x) and passes through the point (4,22). Given that f'(x) = 3x^2 - 3x^(1/2) - 7 use intergration to find f(x).


Calculate the derivative of x^x


Solve 4log₂(2)+log₂(x)=3


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning