What is the equilibrium constant?

Imagine a bathtub that someone forgot to plug, but they left the tap open. If the water from the tap is running fast enough, after some time the speed at which water drains and the speed at which water fills the bathtub will equalibrate, and the water level inside the bathtub will remain constant. Although the system is constantly changing ('new' water flowing in and 'old' water draining), you can't notice it as the apparent level of water remains the same. It is the same with chemical reactions. Imagine a reversible chemical reaction: A <-> B The speed at which A gets converted to B would be v(forward)=k(forward)[A] At the same time, we lose some product because it gets converted back to A. The speed at which B gets converted to B would be v(reverse)=k(reverse)[B] In equalibrium, the two rates are the same. Therefore we can say: v(forward)=v(reverse) k(forward)[A]=k(reverse)[B] k(forward)/k(reverse)=[B]/[A], which is the equilibrium constant, K. It is useful for many chemical calculations, and a general definition is: for a reaction a A + b B -> c C + d D, the equilibrium constant K=([C]^c*[D]^d)/([A]^a*[B]^b).

WL
Answered by Wojciech L. Chemistry tutor

2414 Views

See similar Chemistry A Level tutors

Related Chemistry A Level answers

All answers ▸

i) Write a full balanced equation for (a) the complete combustion of glucose and (b) the incomplete combustion of glucose. ii) Following from part i) suggest a reason (and explain) the difference with the product in reaction (a) and that of reaction (b).


Explain what happens to the boiling and solubility of alcohols as their chain length increases


What is a transition metal?


The ratio between the molar mass of an alkene(A) and an alkyne(B) with the same number of carbon atoms is 1.05. Find the molecular formulas of the two hydrocarbons then write the reaction for how we can obtain the alkene A from the alkyne B.


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences