Find the x coordinate of the minimum point of the curve y = e3x - 6e2x + 32.

To find the minimum point of this curve you need to differentiate y and set it equal to zero before solving for x. If the questions does not say otherwise give your answer to 3 s.f. dy/dx = 3e^3x -12e^2x = 0 solving this for e^x gives : e^x =4 and you need to take the natural logarithm of both sides to find x. x=ln(4)

HW
Answered by Hermione W. Maths tutor

4698 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Using the product rule, differentiate: y = (x^2 - 1)(x^3 + 3).


What is an integral?


Given the equation 3x^2 + 4xy - y^2 + 12 = 0. Solve for dy/dx in terms of x and y.


How do I deal with parametric equations? x = 4 cos ( t + pi/6), y = 2 sin t, Show that x + y = 2sqrt(3) cos t.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences