Find the x coordinate of the minimum point of the curve y = e3x - 6e2x + 32.

To find the minimum point of this curve you need to differentiate y and set it equal to zero before solving for x. If the questions does not say otherwise give your answer to 3 s.f. dy/dx = 3e^3x -12e^2x = 0 solving this for e^x gives : e^x =4 and you need to take the natural logarithm of both sides to find x. x=ln(4)

HW
Answered by Hermione W. Maths tutor

5027 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Find the roots of x^3 + 4x^2 - 5x


Prove that the indefinite integral of I = int(exp(x).cos(x))dx is (1/2)exp(x).sin(x) + (1/2)exp(x).cos(x) + C


Use the addition formulas: sin(x+y)=sin(x)*cos(y)+sin(y)*cos(x), cos(x+y)=cos(x)*cos(y)-sin(x)*sin(y) to derive sin(2x), cos(2x), sin(x)+sin(y).


When trying to solve inequalities (e.g. 1/(x+2)>x/(x-3)) I keep getting the wrong solutions even though my algebra is correct.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning