Simultaneously solve these equations 3x+y=7 and 3x-y=5

Method 1 (Elimination) -

You can see that If you add the 2 equations together you can eliminate the y variable like so 6x=12, then if you divide both sides by 6 you get x=2. Then if you place x=2 back into either of the equations you get y=1.

Method 2 (Substitution) -

Take equation 1 and rearrange it so you get y in terms of x, so all the y's on one side and all the x's on the other side. You get y=7-3x. Take this expression for y and put it into equation 2, 3x-y=5. You get 3x - (7-3x) = 5. If you expand out the brackets you get 6x-7=5 and so 6x=12 then dividing both sides by 6, x=2. Like before place x=2 into either equation to get y=1.

CB
Answered by Charlotte B. Maths tutor

3851 Views

See similar Maths GCSE tutors

Related Maths GCSE answers

All answers ▸

Find the equation of the line passing through the point ( 2, −3) which is parallel to the line with equation y + 4x = 7


Find x when: (2^x)(e^(3x+1))=10. Give your answer in the form (a + ln(b)) / (c + ln(d)) , where a,b,c,d are integers.


Solve x^2+10x-3=0 by completing the square, simplify your answer.


Simplify: 5a + 2 – a + 9


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences