Solve the following simultaneous equations: 3a + 2b = 36 equation ( 1), and 5a + 4b = 64 equation (2)

This question can be answered by the elimination method, substitution method or graphically. I find the elimination method easiest, especially when you can see that the coefficient of a variable (in this case b) in one equation is a factor of the coefficient of that variable in the other equation. I will choose to eliminate 'b' in this case.

Firstly, multiply the whole of equation (1) by 2, resulting in 6a+4b=72. Now we can subtract equation (2): 5a+4b=64 from the new equation (1): 6a+4b=72. This results in a=8, showing we have eliminated 'b'. Fortunately this already gives us the answer for a. Next, substitute a=8 into any of the two equations. Let's choose equation (1): 3 x 8 + 2b =36, which leads to 2b = 12 , which leads to b=6. This means the answer is a=8 and b=6. To check our answer is correct, substitute these values for x and y into equation (2): 5 x 8 + 4 x 6 = 64, which gives 64 = 64, showing us that our answer is correct.

AG
Answered by Alejandro G. Maths tutor

5607 Views

See similar Maths GCSE tutors

Related Maths GCSE answers

All answers ▸

How to solve the simultaneous equations 3x+2y=7 and 5x+y=14


Show that 12 cos 30° - 2 tan 60° can be written in the form√ k where k is an integer


Solve the Simultaneous Equations -3X + 4Y=11 & X-2Y = -5 to find the values of X and Y


David travels from home to work at 30 mph. At the end of the day, he travels from work back home via the same route at 40 mph. What is his average speed while travelling? (Give your answer as a simplified fraction) (None-Calculator)


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning