Find the binomial expansion of (2+x)^3

We know thst the binomial expansion formula is (1+x)= 1+nx +(n)(n-1)(x2)/2! ...etc

Thus we want to rearrange the expression we are given into the form (1+x)so that we can apply the formula to it.

Taking out a factor of 2 we have (2(1+(x/2)))3 which simplifies to 23(1 + (x/2) ) = 8(1+ (x/2))

From here we can apply the binomial expansion formula. To make the caculations simpler first we will calculate the expansion of (1+ (x/2))and then multiply the expansion by 8 to get our answer.

(1 + (x/2))3   = 1 + (3)(x/2) + ((3)(2)(x/2)2)/2! + ((3)(2)(1)(x/2)3)/3! = 1 + 3x/2 + 3x2/4 + x3/8

Multiplying this expansion by 8 we get 8(1 + 3x/2 + 3x2/4 + x3/8) = 8 + 12x + 6x2 + x3

Thus, (2+x)3 = 8 + 12x + 6x2 + x3

LV
Answered by Laura V. Maths tutor

10080 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

A curve has equation y = x^3 - 6x^2 - 15x. The curve has a stationary point M where x = -1. Find the x-coordinate of the other stationary point on the curve.


Solve the equation d/dx((x^3 + 3x^2)ln(x)) = 2x^2 + 5x, leaving your answer as an exact value of x. [6 marks]


If I have a ball thrown horizontally with a speed u off a building of height h , how do I calculate its speed when it hits the ground?


The curve C has equation y = 3x^4 – 8x^3 – 3 (a) Find (i) dy/dx (ii) d^2y/dx^2 (3 marks) (b) Verify that C has a stationary point when x = 2 (2marks) (c) Determine the nature of this stationary point, giving a reason for your answer. (2)


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning