Simplify (5-2√3)/(√3-1) giving your answer in the form p +q√3, where p and q are rational numbers

The trick here is to use a technique called the difference of squares. If we multiply the top and bottom of the fraction by the conjugate* of the denominator, we can remove any square root terms from the denominator.

*If the denominator is √3-1, its conjugate is √3+1.

((5-2√3)(√3+1))/((√3-1)(√3+1)) = (5√3 - 2√3 - 6 + 5)/(3 - √3 + √3 -1) = (3√3-1)/2= (3/2)*√3 -1/2

AW
Answered by A W. Maths tutor

19769 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

The quadratic equation x^2 + 4kx+2(k+1) = 0 has equal roots, find the possible values of k.


differentiate y=(4x^3)-5/x^2


Find the area encompassed by y=(3-x)x^2 and y=x(4-x) between x=0 and x=2.


Find the first derivative of 2x^3+5x^2+4x+1 (with respect to x)


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning