Simplify (5-2√3)/(√3-1) giving your answer in the form p +q√3, where p and q are rational numbers

The trick here is to use a technique called the difference of squares. If we multiply the top and bottom of the fraction by the conjugate* of the denominator, we can remove any square root terms from the denominator.

*If the denominator is √3-1, its conjugate is √3+1.

((5-2√3)(√3+1))/((√3-1)(√3+1)) = (5√3 - 2√3 - 6 + 5)/(3 - √3 + √3 -1) = (3√3-1)/2= (3/2)*√3 -1/2

AW
Answered by A W. Maths tutor

19051 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Using the product rule, differentiate: y = (x^2 - 1)(x^3 + 3).


What is the quotient rule and how is it applied?


The line y=5-x intersects the curve y=x^2-3x+2 at the points P and Q. Find the (x,y) coordinates of P and Q.


How to differentiate with respect to x, xsin2x.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences