Simplify (5-2√3)/(√3-1) giving your answer in the form p +q√3, where p and q are rational numbers

The trick here is to use a technique called the difference of squares. If we multiply the top and bottom of the fraction by the conjugate* of the denominator, we can remove any square root terms from the denominator.

*If the denominator is √3-1, its conjugate is √3+1.

((5-2√3)(√3+1))/((√3-1)(√3+1)) = (5√3 - 2√3 - 6 + 5)/(3 - √3 + √3 -1) = (3√3-1)/2= (3/2)*√3 -1/2

AW
Answered by A W. Maths tutor

19628 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Find ∫(x^3+x^2+6)dx.


Given the equation 3x^2 + 4xy - y^2 + 12 = 0. Solve for dy/dx in terms of x and y.


Use the Chain Rule to differentiate the following equation: y=e^(3-2x)


If z is a complex number, solve the equation (z+i)* = 2iz+1 where the star (*) denotes the complex conjugate.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning