Differentiate y = 7(x)^2 + cos(x)sin(x)

This question uses a combination of standard differentiation and the product rule. The second part of the equation cos(x)sin(x) is the product of two funtions so the product rule must be used. Product rule: (fg)'(x) = f '(x)g(x) + f(x)g'(x) Let f(x) = cos(x) and g(x) = sin(x). The differentials are: f'(x) = -sin(x) and g'(x) = cos(x)

Differentiating the equation you get dy/dx = 14x + -sin(x)sin(x) + cos(x)cos(x)  dy/dx = 14x + cos^2(x) - sin^2(x) The equation is now differentated but can be simplified by using the identity cos(2x) = cos^2(x) - sin^2(x) The final answer is therfore: dy/dx = 14x + cos(2x)

EC
Answered by Edward C. Maths tutor

3713 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

We have the curve f(x) = (x^2-5x)(x-1)+ 3x. Sketch the graph y=f(x), making sure to plot the co-ordinates where the curve meets the axes.


Find the equation of the tangent line to the parabola y=x^2+3x+2 at point P(1, 6).


Integrate the function : F'(x)=3x^2+4x-5


Find the area under the curve with equation y = 5x - 2x^2 - 2, bounded by the x-axis and the points at which the curve reach the x-axis.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning