Prove that the sqrt(2) is irrational

To do this we will assume sqrt(2) is rational, a fraction, which means: 21/2 = m/n; m,n belong to integers. Also, m/n is an irreductible fraction, meaning m and n have no common divisors.

21/2 = m/n <=> 2 = m2/n2 <=>  2n2=m2;  this means m2 is even (divisible by 2), which implies m is even (can be proven).

Hence, m can be rewritten as: m = 2k. Thus: 2n2=(2k)2 <=> 2n2=4k2 <=> n2=2k2; the same logic is applied as above: n2 is even (divisible by 2), which implies n is even.

We have now arrived at a contradiction: m/n was supposed to be an irreductable fraction, however both m and n can be divided by 2.

Ergo, by contradiction, we can conclude that srqt(2) cannot be a rational number, hence, srqt(2) is irrational.

JC
Answered by Joao C. Maths tutor

3562 Views

See similar Maths GCSE tutors

Related Maths GCSE answers

All answers ▸

I toss a fair coin until I get two head in a row. What is the probability that I toss the coin 5 times in total?


What are the different averages?


There are three boxes and one has a prize inside. You are told to choose a box. One of the other boxes is then opened, showing that it is empty. You are given the option to switch your choice to the other remaining box. Should you switch? Why?


How do I solve an equation with both x and y variables (simultaneous equation)?


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning