Prove that the sqrt(2) is irrational

To do this we will assume sqrt(2) is rational, a fraction, which means: 21/2 = m/n; m,n belong to integers. Also, m/n is an irreductible fraction, meaning m and n have no common divisors.

21/2 = m/n <=> 2 = m2/n2 <=>  2n2=m2;  this means m2 is even (divisible by 2), which implies m is even (can be proven).

Hence, m can be rewritten as: m = 2k. Thus: 2n2=(2k)2 <=> 2n2=4k2 <=> n2=2k2; the same logic is applied as above: n2 is even (divisible by 2), which implies n is even.

We have now arrived at a contradiction: m/n was supposed to be an irreductable fraction, however both m and n can be divided by 2.

Ergo, by contradiction, we can conclude that srqt(2) cannot be a rational number, hence, srqt(2) is irrational.

JC
Answered by Joao C. Maths tutor

3307 Views

See similar Maths GCSE tutors

Related Maths GCSE answers

All answers ▸

How do you expand (2x-1)(3x+4) using the FOIL method?


find the coordinates of the single stationary point of the curve with equation y=8x^2 + 2/x


I have a bag with 4 different coloured marbles. Blue, green, red, and orange. I have 2x,7,7x + 5,4x -3 of each coloured marble respectively. If the probability of a green marble being picked is 7/100, find the probability of an orange marble being picked.


Solve the following equation 3(2x -1) = 4(x - 2)


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning