Prove that the sqrt(2) is irrational

To do this we will assume sqrt(2) is rational, a fraction, which means: 21/2 = m/n; m,n belong to integers. Also, m/n is an irreductible fraction, meaning m and n have no common divisors.

21/2 = m/n <=> 2 = m2/n2 <=>  2n2=m2;  this means m2 is even (divisible by 2), which implies m is even (can be proven).

Hence, m can be rewritten as: m = 2k. Thus: 2n2=(2k)2 <=> 2n2=4k2 <=> n2=2k2; the same logic is applied as above: n2 is even (divisible by 2), which implies n is even.

We have now arrived at a contradiction: m/n was supposed to be an irreductable fraction, however both m and n can be divided by 2.

Ergo, by contradiction, we can conclude that srqt(2) cannot be a rational number, hence, srqt(2) is irrational.

JC
Answered by Joao C. Maths tutor

3238 Views

See similar Maths GCSE tutors

Related Maths GCSE answers

All answers ▸

A circular table top has diameter 140 cm. The volume of the table top is 17,150π cmᶟ. Calculate the thickness of the table top


Kieran, Jermaine and Chris play football. Kieran has scored 8 more goals than Chris. Jermaine has scored 5 more goals than Kieran. Altogether they have scored 72 goals. How many goals did Jermaine score?


Multiply (x+2) & (x+3)


Work out 2 1/7 + 1 1/4.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences