Differentiate the following function u = Cos(x3)

 u = Cos(x3)

To differentiate this function we will use the chain rule. Firstly we will set xto another variable name such as v. So now v = x3 . Lets differentiate this. dv/dx = 3x2

We can now differentiate cos(v) du/dv = -sin(v). Now to complete the chain rule we must do dv/dx*du/dv. Which will be -sin(v)*3x= -3x2sin(v). Now we can just put the x3 back in instead of the v and our final answer will be -3x2sin( x3).

SB
Answered by Serena B. Maths tutor

2903 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

When using the addition rule in probability, why must we subtract the "intersection" to find the "union" with the Addition Rule?


Use the formula 5p + 2q = t to find the value of q when p = 4 and t = 24. 6


How to differentiate x^2 + y^2 - 2x + 6y = 5


How do you prove the 1^2 +2^2+.....+n^2 = n/6 (n+1) (2n+1) by induction?


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences