prove that (3x+1)^2 - (3x-1)^2 is a multiple of 4 for all positive integer values of x

(3x + 1)2 = 9x2 + 6x + 1 (3x - 1)2 = 9x2 - 6x + 1 (9x2 + 6x + 1) - (9x2 - 6x + 1) = 12x 12x/4 = 3x Therefore for all positive integers of x the result is a multiple of 4

KJ
Answered by Katie J. Maths tutor

6673 Views

See similar Maths GCSE tutors

Related Maths GCSE answers

All answers ▸

John and simon share £80 in the ratio 5:3 in that order, how much do they each receive?


The recommended price of a ladder is £75. The ladder is sold in 2 shops, one with a 30% discount the other with a discount of 2/9. How much is the discount in the two shops and which is cheaper and by how much? Non-calculator


Jack has 20 sweets. Will also has 20 sweets. Jack gives Will x sweets. Jack then eats 5 of his sweets. Will then eats half of his sweets. Write expressions for the number of sweets Jack and Will now have.


A is the point with coordinates (5, 9) B is the point with coordinates (d, 15). The gradient of the line AB is 3. Work out the value of d.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning