How do you go about differentiating a^x functions?

A key point to remember here is that a^x could mean the base (a) is not “e”-that special number which has a gradient function, dy/dx (the differential), EQUAL to the function itself, y=e^x. When "a" is any real number, you must treat it differently to functions with the base "e".For the function y=a^x, the rule is simply dy/dx=a^xlna(^ means “to the power of”. * means “multiply”)The proof for this requires an understanding of implicit differentiation (differentiating both x and y terms within an implicit relation).Start with the functiony=a^xln (natural log) both sides of the equationlny=ln(a^x)    =xlnaDifferentiate implicitlyd(lny)/dx=d(xlna)/dx​(the implicit part means you differentiate with respect to y but multiply by dy/dx after...)1/ydy/dx=lna (<----"xlna" differentiates to simply lna because a is just a constant and so lna is also just a constant)Multiply across by ydy/dx=ylnaSince y=a^x...dy/dx=a^x*lna!N.B. differentiating a^(f(x)) where f(x) is a function of x requires use of the chain rule too (first set the function f(x) to another letter, say u, so you have a^u. Differentiate a^u with the above rule. Differentiate u=f(x) separately, then use chain rule).

AW
Answered by Adam W. Maths tutor

81251 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Given that y = 5x^4 + 3x^3 + 2x + 5, find dy/dx


The graph with equation y= x^3 - 6x^2 + 11x - 6 intersects the x axis at 1, find the other 2 points at which the graph intersects the x axis


A curve has the equation 6x^(3/2) + 5y^2 = 2 (a) By differentiating implicitly, find dy/dx in terms of x and y. (b) Hence, find the gradient of the curve at the point (4, 3).


Express 3sin(2x) + 5cos(2x) in the form Rsin(2x+a), R>0 0<a<pi/2


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning