Solve the simultaneous equations equation 1: 2x+3y=4 and equation 2: 5x+6y=7

This question can be solved by many methods but the elimination method is the fastest one in this case.  The unknown that will be eliminated is y. Equation 1 is multiplied by 2 to give 4x+6y=8. Since I have chosen to eliminate y, I will now subtract equation 1 from equation 2 as this will leave us with the x as the only unknown. So:  5x+6y-4x-6y=7-8 This gives x=-1 which can be substituted in either of equation 1 or 2 to solve for y. If we substitute in equation 1 we get 2*(-1)+3y=4 so y=2. We can check that the answer is correct by substituting x and y in either equation to confirm that it's equal to the right hand side of the equation.  So for equation 2: 5*(-1)+6*2=7 which is what was expected so the answer is correct.

MP
Answered by Marilena P. Maths tutor

4734 Views

See similar Maths GCSE tutors

Related Maths GCSE answers

All answers ▸

Talil is going to make some concrete mix. He needs to mix cement, sand and gravel (1: 3:5) by weight. Talil wants to make 180 kg of concrete mix. He has 15 kg of cement, 85 kg of sand, 100 kg of gravel. Does he have enough to make the concrete?


1ii) sketch y=x^2-4x-21


Many students do not understand the rules for when one can 'cancel' in regards to fractions


Solve 2(x+4)=4x-6 for x


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning