A particle is moving in the with acceleration (2t - 3) ms^-2 and initial velocity 2ms^-1. Find the distance travelled when the velocity has reached 12ms^-1.

(1.) Integrate the expression for acceleration to find an expression for velocity: Velocity v = t^2 - 3t + c        When t = 0, velocity = 2. Substituting in to find constant c, 2 = 0 + 0  + c therefore c = 2.    v = t^2 - 3t + 2       (2.) Find the time taken for velocity to reach 12ms^-1.     t^2 - 3t + 2 = 12   so   t^2 -3t - 10 = 0. Factorising gives (t-5)(t+2)=0, so t = 5 or t = -2. Since time must be positive, t = 5.  (3.) Integrate the expression for velocity to find an expression for distance travelled.  Displacement x = (1/3)t^3 - (3/2)t^2 + 2t +d         When t = 0, displacement = 0 therefore d = 0.     x = (1/3)t^3 - (3/2)t^2 + 2t (4.) Find displacement when t = 5.    When t = 5, x = 85/6 metres.  Hence distance travelled = 85/6 m, approximately 14.2m.

RF
Answered by Richard F. Maths tutor

6012 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Integrate the function y = 2x^2 + 3x + 8 with respect to x.


The cubic polynomial f(x) is defined by f(x) = 2x^3 -7x^2 +2x+3. Express f(x) in a fully factorised form.


Find the roots of the following quadratic equation: x^2 +2x -15 =0


A curve has equation y = e^(3x-x^3) . Find the exact values of the coordinates of the stationary points of the curve and determine the nature of these stationary points.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences