A curve has parametric equations -> x = 2cos(2t), y = 6sin(t). Find the gradient of the curve at t = π/3.

First we need to find the derivatives of x and y in terms of t. dx/dt can be found using the chain rule. Differentiating the inside of the bracket gives us 2. Multiplying the outside gives -2sin(2t) (Derivative of cos given in the formula book). Multiplying these terms together gives us dx/dt = -4sin(2t). For dy/dt its a simple differential from the formula book. dy/dt = 6cos(t). In order to find dy/dx, we can apply the chain rule one more time -> dy/dx = dy/dt*dt/dx. dt/dx is the reciprocal of dx/dt -> dt/dx = 1/(-4sin(2t)). Therefore dy/dx = 6cos(t)/-4sin(2t) = -3cos(t)/2sin(2t). Now we can input our value of t to find the gradient at t =  π/3 (Use a calculator). dy/dx = -3cos(π/3)/2sin(2π/3) = -(3/2)/root(3). Multiplying top and bottom by root(3) gives the final answer of -root(3)/2.

MM
Answered by Matvei M. Maths tutor

4001 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

The probability function of a discrete random variable X is given by p(x)=x^2 x =1,2,3. Find E(X)


Find the turning points of the equation y=4x^3-9x^2+6x?


Express the following in partial fractions: (x^2+4x+10)/(x+3)(x+4)(x+5)


Differentiate the equation y = (2x+5)^2 using the chain rule to determine the x coordinate of a stationary point on the curve.


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences