How does the angle of an inclined plane relate to its efficiency, given the coefficient of friction between a body and the plane?

Let’s define the efficiency first. The efficiency is basically the ratio between what we want over what we pay for. So, we want to lift an object up to a height, say H. In the ideal scenario we lift that object on the vertical, consuming a work equal to mgH. This is the ideal scenario, this is what we want, but we must use an inclined plane for lifting it to the desired height, therefore we will have to do more work, as we have to overcome the friction on the plane. In order to lift the object, we must apply a force F, parallel to the plane, where F is given by: F=Mumg*cos(alpha) + m * sin(alpha).

Thus, the work done = F * D, where D is the distance travelled along the plane to reach the desired height H.

Hence, D = H / sin(alpha)

Efficiency = (mgH)/ ((Mumgcos(alpha) + mg*sin(alpha)) *H/ sin(alpha))

Simplifying the fraction gives:

 Efficiency = 1/(1+Mu*cot (alpha)) - This is the relation required. 

Notations used:

m = mass of the object 

g = gravitational constant

alpha = the angle of the inclined plane 

Mu = coefficient of friction between the body and the inclined plane. 

AS
Answered by Alexandru S. Physics tutor

16609 Views

See similar Physics A Level tutors

Related Physics A Level answers

All answers ▸

State Lenz's law and hence describe and explain what happens to a magnet travelling through a metal tube


In one second a mass of 210 kg of air enters at A. The speed of this mass of air increases by 570 m s–1 as it passes through the engine. Calculate the force that the air exerts on the engine.


A DVD is dropped from rest. The DVD does not reach terminal velocity before it hits the ground. Explain how the acceleration of the DVD varies from the instant it is dropped until just before it hits the ground.


Two balls of mass 3kg and 7 kg respectively move towards one another with speeds 5ms^-1 and 2ms^-1 respectively on a smooth table. If they collide and join, what velocity do they move off with?


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning