How does the angle of an inclined plane relate to its efficiency, given the coefficient of friction between a body and the plane?

Let’s define the efficiency first. The efficiency is basically the ratio between what we want over what we pay for. So, we want to lift an object up to a height, say H. In the ideal scenario we lift that object on the vertical, consuming a work equal to mgH. This is the ideal scenario, this is what we want, but we must use an inclined plane for lifting it to the desired height, therefore we will have to do more work, as we have to overcome the friction on the plane. In order to lift the object, we must apply a force F, parallel to the plane, where F is given by: F=Mumg*cos(alpha) + m * sin(alpha).

Thus, the work done = F * D, where D is the distance travelled along the plane to reach the desired height H.

Hence, D = H / sin(alpha)

Efficiency = (mgH)/ ((Mumgcos(alpha) + mg*sin(alpha)) *H/ sin(alpha))

Simplifying the fraction gives:

 Efficiency = 1/(1+Mu*cot (alpha)) - This is the relation required. 

Notations used:

m = mass of the object 

g = gravitational constant

alpha = the angle of the inclined plane 

Mu = coefficient of friction between the body and the inclined plane. 

AS
Answered by Alexandru S. Physics tutor

18308 Views

See similar Physics A Level tutors

Related Physics A Level answers

All answers ▸

Two current carrying wires are placed next to each other and anti-parallel currents are allowed to flow. Is the magnetic force between the wires attractive or repulsive?


A ball of mass m is thrown from the ground at the speed u=10ms^-1 at an angle of 30 degrees. Find the max height, the total flight time and the max distance it travels?Assume g=10ms^-1 and there is no air friction


Show that a mass on a spring obeys simple harmonic motion.


Describe how the strong nuclear force between two nucleons varies with the separation of the nucleons, quoting suitable values for separation.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning