Find the values of k for which the equation (2k-3)x^2-kx+(k-1) has equal roots

We know that an equation has equal roots if the sqrt(b^2-4ac) term in the quadratic equation is equal to zero. Therefore using this information we can form an expression for k to be (-k)^2-4(2k-3)(k-1)=0. From this we can simplfy the expression by expanding the brackets to give -7k^2+20k-12=0, which is in the form of a quadratic equation which we can solve to find two values of k.

Knowing that 7 is a prime number we know that one bracket has to contain -7k and the other to contain k. We then look at the factors of -12 and knowing that we need to make a large value of 20k realise that the minus interger term has to be in the bracket with k. Looking at the factors of -12 it becomes obvious that using -2 and 6 will yield 20k and therefore we are able to find the equation can be simplfied to (-7k+6)(k-2)=0 giving k=2,6/7 are the values for k

EH
Answered by Eliott H. Maths tutor

13242 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Integrate the function f(x) where f(x)= x^2 +sin(x) + sin^2(x)


Maths C1 2017 1. Find INT{2x^(5) + 1/4x^(3) -5}


∫ 4/x^2+ 5x − 14 dx


(19x - 2)/((5 - x)(1 + 6x)) can be expressed as A/(5-x) + B/(1+6x) where A and B are integers. Find A and B


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning