Find the values of k for which the equation (2k-3)x^2-kx+(k-1) has equal roots

We know that an equation has equal roots if the sqrt(b^2-4ac) term in the quadratic equation is equal to zero. Therefore using this information we can form an expression for k to be (-k)^2-4(2k-3)(k-1)=0. From this we can simplfy the expression by expanding the brackets to give -7k^2+20k-12=0, which is in the form of a quadratic equation which we can solve to find two values of k.

Knowing that 7 is a prime number we know that one bracket has to contain -7k and the other to contain k. We then look at the factors of -12 and knowing that we need to make a large value of 20k realise that the minus interger term has to be in the bracket with k. Looking at the factors of -12 it becomes obvious that using -2 and 6 will yield 20k and therefore we are able to find the equation can be simplfied to (-7k+6)(k-2)=0 giving k=2,6/7 are the values for k

EH
Answered by Eliott H. Maths tutor

11935 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

The curve C has equation: 2(x^2)y + 2x + 4y – cos(pi*y) = 17. Use implicit differentiation to find dy/dx in terms of x and y.


Simplify the following expression to a fraction in its simplest form: [(4x^2 + 6x)/(2x^2 - x -6)] - [(12)/(x^2 - x - 2)]


How do you differentiate x^x?


Derive from the standard quadratic equation, the form of the quadratic solution


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences