y = 4x / (x^2 + 5). Find dy/dx.

We use the quotient rule here which states that if y = f(x)/g(x) then dy/dx = (f'(x)g(x) - g'(x)f(x)) / (g(x)^2). Here f(x) = 4x and g(x) = x^2 + 5, so we have f'(x) = 4 , g'(x) = 2x. This gives us dy/dx = (4(x^2 + 5) - 2x(4x)) / ((x^2 + 5)^2) = (4x^2 + 20 - 8x^2) / ((x^2 + 5)^2) = (20 - 4x^2) / ((x^2 + 5)^2).

PS
Answered by Patrick S. Maths tutor

10428 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

How do we know that the derivative of x^2 is 2x?


The equation " x^3-3x+1=0 " has three real roots. Show that one of the roots lies between −2 and −1


Given the equation 0=5x^2+3xy-y^3 find the value of dy/dx at the point (-2,2)


Find the tangent to the curve y=x^2 +2x at point (1,3)


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning