y = 4x / (x^2 + 5). Find dy/dx.

We use the quotient rule here which states that if y = f(x)/g(x) then dy/dx = (f'(x)g(x) - g'(x)f(x)) / (g(x)^2). Here f(x) = 4x and g(x) = x^2 + 5, so we have f'(x) = 4 , g'(x) = 2x. This gives us dy/dx = (4(x^2 + 5) - 2x(4x)) / ((x^2 + 5)^2) = (4x^2 + 20 - 8x^2) / ((x^2 + 5)^2) = (20 - 4x^2) / ((x^2 + 5)^2).

PS
Answered by Patrick S. Maths tutor

10736 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

A cannon at ground level is firing at a fort 200m away with 20m high walls. It aims at an angle 30 degrees above the horizontal and fires cannonballs at 50m/s. Assuming no air resistance, will the cannonballs fall short, hit the walls or enter the fort?


Given the points P(-1,1) and S(2,2), give the equation of the line passing through P and perpendicular to PS.


Integrate sin^2(x)


Show that the derivative of tan(x) is sec^2(x), where sec(x) is defined as 1/cos(x). [Hint: think of tan(x) as a quotient of two related functions and apply the appropriate identity]


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning