How can I find the derivative of y = tan(x)?

Let's first recall the definition of tan(x) = sin(x)/cos(x). Hence, y' = d/dx( sin(x)/cos(x) ). Recall quotient rule for differentiation: ( f(x)/g(x) )' = ( f '(x)^2*g(x) - f(x)*g'(x)^2 ) / g(x)^2 and that d/dx( sin(x) ) = cos(x), and d/dx( cos(x) ) = - sin(x). Then, y' = ( cos(x)cos(x) - sin(x)(-sin(x)) )/cos^2(x) => y' = ( cos^2(x) + sin^2(x) ) /cos^2(x). Recalling that cos^2(x) + sin^2(x) = 1 by the Pythagorean trigonometric identity, then y' = 1 / cos^2(x). Since sec(x) = 1/cos(x), we can state our result as: y' = d/dx( tan(x) ) = sec^2(x).

RB
Answered by Riccardo B. Maths tutor

4996 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Solve the equation " 2sec^2(x) = 5tanx " for 0 < x < π


What is the integral of x^2 sin(x) between the limits 0 and π/2


Why don't I have to put the +C after my answer for a definite integral?


Find the first 3 terms and the sum to infinity of a geometric series with first term, 10 and common ratio 0.2


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences