How do you differentiate parametric equations?

Parametric equations are a set of equations which both depend on the same variable, such as t. An example of this would be:

x = 2t2​+1 and y = t​4​-2

As the value of t changes the equations will give you seperate values for x and for y which can be plotted on a coordinate grid.

To differentiate a parametric equation you must first differentiate both the equation for x and for y seperately with respect to t. So in this case it would be:

dx/dt = 4t and dy/dt = 4t3

We now have dx/dt and dy/dt. By simply divding dy/dt by dx/dt we get dy/dx as the dt cancels in the division (Since dividing is the same as multiplying by the reciprocal so (dy/dt)/(dx/dt) = (dy/dt)x(dt/dx) = dy/dx).

So for our example:

(dy/dt)/(dx/dt) = 4t3​/4t = t2 = dy/dx.

TW
Answered by Tim W. Maths tutor

6197 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

If y = 4x^3 - 6x^2 + 7 work out dy/dx for this expression


A curve C with an equation y = sin(x)/e^(2x) , 0<x<pi has a stationary point at P. Find the coordinates ofP?


Express 4sin(x)+6cos(x) in terms of Rsin(x+a) where R and a are constants to be determined (a should be given in rad).


Integrate x*sin(x) with respect to x.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning