Solve the following simultaneous equations: 4x+y=10 and 2x-3y=19

To begin to solve this question, we need to re-arrange the equations presented so they both appear in terms of 3y=. This will allow us to get a value for y and thus a value for x. First re-arrange the first equation into the form y=10-4x. From here, times both sides of the equation by 3 (not changing the fundamental relationship between any of the terms) to give us 3y=30-12x. We then rearrange the second equation into analogous terms, getting 3y=2x-19. By then replacing 3y in the first equation with its value in the second equation we get 2x-19=30-12x. We then add 12x and 19 to both sides, giving us 14x=49. From this we get x=3.5 and by plugging this into our equations, we get y= -4.

HW
Answered by Hugh W. Maths tutor

9329 Views

See similar Maths GCSE tutors

Related Maths GCSE answers

All answers ▸

Solve the simultaneous equations 5x + y = 21 and x - 3y = 9


v = u + at, u = 1 a = -3 t = 1/2, Work out the value of v.


c is a positive integer. Prove that (6c^3+30c) / ( 3c^2 +15) is an even number.


Bob earns £7.70 an hour, and he works 30 hours per week. If Bob has 28 days of unpaid holidays to take, how much does he earn in a year? Also will he be taxed? (Bob will be taxed if he earns over £10000 in one year)


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences