Find dy/dx for y=5x^3-2x^2+7x-15

Step 1: To differentiate an equation there is a simple rule to follow. For y=axn dy/dx=anxn-1. so for an example y=x3, dy/dx=3x2. Therefore we just apply this rule into our equation.

Step 2: Break the equation down and do each factor of x seperately so 5x3 differentiates into 15x2, -2x2 differentiates to -4x, 7x differentiates to 7 and the 15 disappears from the end. This happens as the 15 just tells us where the line crosses the y axis and therefore has no bearing on the gradient.

Step 3: Put the differentiated parts back together to give the differentiated equation

dy/dx=15x2-4x+7

MT
Answered by Matthew T. Maths tutor

12856 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Given log3(3b + 1) - log3(a-2) = -1 for a > 2. Express b in terms of a.


Find the tangent to the curve y = x^3 - 2x at the point (2, 4). Give your answer in the form ax + by + c = 0, where a, b and c are integers.


((x^2+4x)/2x)-((x^2-4x)/x)


Find the stationary points of the curve y=x^4-8x^2+3 and determine their nature.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning