Find dy/dx for y=5x^3-2x^2+7x-15

Step 1: To differentiate an equation there is a simple rule to follow. For y=axn dy/dx=anxn-1. so for an example y=x3, dy/dx=3x2. Therefore we just apply this rule into our equation.

Step 2: Break the equation down and do each factor of x seperately so 5x3 differentiates into 15x2, -2x2 differentiates to -4x, 7x differentiates to 7 and the 15 disappears from the end. This happens as the 15 just tells us where the line crosses the y axis and therefore has no bearing on the gradient.

Step 3: Put the differentiated parts back together to give the differentiated equation

dy/dx=15x2-4x+7

MT
Answered by Matthew T. Maths tutor

12260 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Find the gradient of the curve (x^3)-4(y^2)=12xy at the point P(-8,8)


Calculate the volume obtained when rotating the curve y=x^2 360 degrees around the x axis for 0<x<2


Express cos(2x) in terms of acos^2(x) + b


Differentiate e^(xsinx)


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences