Find dy/dx for y=5x^3-2x^2+7x-15

Step 1: To differentiate an equation there is a simple rule to follow. For y=axn dy/dx=anxn-1. so for an example y=x3, dy/dx=3x2. Therefore we just apply this rule into our equation.

Step 2: Break the equation down and do each factor of x seperately so 5x3 differentiates into 15x2, -2x2 differentiates to -4x, 7x differentiates to 7 and the 15 disappears from the end. This happens as the 15 just tells us where the line crosses the y axis and therefore has no bearing on the gradient.

Step 3: Put the differentiated parts back together to give the differentiated equation

dy/dx=15x2-4x+7

MT
Answered by Matthew T. Maths tutor

12349 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Given the function y=(x+1)(x-2)^2 find i) dy/dx ii) Stationary points and determine their nature


Expand the expression (1+3x)^1/3 up to the term x^3.


How would I answer this question? Use factor theorem to show (x-2) is a factor of f(x) = 2x^3 -7x^2 +4x +4.


The second and fifth terms of a geometric series are 750 and -6 respectively. Find: (1) the common ratio; (2) the first term of the series; (3) the sum to infinity of the series


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences