Given the equation 3x^2 + 4xy - y^2 + 12 = 0. Solve for dy/dx in terms of x and y.

Here the key is to remember to differentiate with both x and y with respect to x, where the differential of y is dy/dx. Consider the first term, 3x2 : This differentiates to 6x. This is done by multiplying the coefficient and the power and then subtracting one from the power ie. (3x2)x2-1 = 6x. Consider the second term, 4xy. To differentiate this, we must use the chain rule, this means differentiating first x and then y. First with rx, here you consider y to be a constant (ie. just a number we are multiplying the coefficient by), so we differentiate to get, since x has a power of 1, 4y. Then differentiate with y with respect to x, remembering the differential of y is dy/dx, then with y having a power of 1, we get (4x1)x(dy/dx). We then add the differentials together, according to the chain rule to get 4y + 4x(dy/dx). Then consider the third term, -y2 : This differentiates to -2y(dy/dx). As we did with 3x2 , we multiply the coefficient by the power and subtract one from the power, however here we remember that y differentiates to dy/dx. So, (-1x2)y2-1(dy/dx) = -2y(dy/dx). The final term is a constant, and therefore differentiates to 0 leaving us with 6x + 4y +4x(dy/dx) -2y(dy/dx) = 0. To find dy/dx, you then rearrange: 6x + 4y = 2y(dy/dx) - 4x (dy/dx) Then taking dy/dx out: 6x + 4y = (dy/dx)(2y - 4x) Divide through by 2y - 4x: dy/dx = (6x + 4y)/(2y - 4x) = (3x + 2y)/(y - 2x)

EW
Answered by Emma W. Maths tutor

4184 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Find the stationary points of the function y = (1/3)x^3 + (1/2)x^2 - 6x + 15


Circle C has equation x^2 + y^2 - 6x + 4y = 12, what is the radius and centre of the circle


A 2.4 m long plank of mass 20kg has 2 pins, each 0.5 meters from each respective plank end. A person of mass 40kg stands on the plank 0.1m from one of the pins. Calculate the magnitude of reactions at the pins for this structure to be in equilibrium.


A block of mass 5kg is at rest on a smooth horizontal table, and connected to blocks of 3kg and 4kg which are hanging by strings via pulleys on either end of the table. Find the acceleration of the system and the tension in each string.


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences