Solve the simultaneous equations. x^2 + y^2 = 29. y-x = 3

The 2 equations are: 1) x2 + y2 = 29 2) y-x=3 In this kind of simultaneous equation, you cannot take it away from each other. Instead, you need to substitue. To do so, rearrange the 2nd equation to make x or y the subject. To make y the subject, we add x on each side: y= 3+ x We can now substitute y into the first equation and solve it. x2 + y2 = 29 x2 + (3+ x)(3+ x) = 29 x2 + x2 + 6x + 9 =29 2x2 + 6x -20 = 0 x2 + 3x -10 = 0 (x-2)(x+5) = 0 So x can be: x-2 = 0   or   x+5 = 0 x = 2             x = -5 This means y can be: y-x = 3 so y = 3 + x When x = 2, y = 3+2 = 5. When x = -5, y = 3+(-5) = -2.

PS
Answered by Pallave S. Maths tutor

12455 Views

See similar Maths GCSE tutors

Related Maths GCSE answers

All answers ▸

How to solve the inequality 4(x+3) < 60?


Work out the nth term of the sequence 3, 7, 11, 15, ...


On a packet of brown rice it says 'When 60g of rice is cooked, it will weigh 145g.' If Katy has 100g of brown rice, how much will it weigh when cooked?'


Solve ((6+x)/2) + ((2-3x)/3) = 31/6


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences