How do I sketch a graph of a polynomial function?

To sketch a polynomial function (a polynomial is a function involving powers of x, for example y = x3 + 2x2 - 13x + 10):

1. Start by differentiating the function to find its turning points (where the first differential is equal to zero). In this case, the first differential of the function is 3x2 + 4x -13. Solve for the roots of the differential (3x2 + 4x -13 = 0) by using the quadratic equation. The roots of the first differential are the points at which the graph has a maximum or minimum turning point (or, more unusually at A level, a point of inflection).

2.To check whether the turning point are maxima or minima, differentiate again for the second differential. Then put in the x-coodinates of each turning point. If the second differential is positive for that x-value, then the turning point is a minimum; if the second differential is negative then the point is a maximum.

3. Find the roots of the polynomial. Often, for a function with powers of x that are 3 or higher, an A-level question will give you a root; if not, try putting in values of x to the equation to find out if they are roots (a root is where y=0 on your graph). Once you have a root, use algebraic long division to factorise your polynomial. For example, with the polynomial y = x3 + 2x2 -13x +10, x=1 is a root, so you would divide (x3 + 2x2 -13x +10) by (x-1). This would give you (x2 + 3x - 10), which you can find the roots of using the quadratic equation. The graph crosses the x-axis at the roots - in this case, the graph crosses at x = -5, x = 1 and x = 2.

4. What does the graph do as x approaches infinity? Think about what happens as x gets very large and positive (going to the right on your graph). If the x term with the highest power is positive, then y will also be very large and positive. If the x term with the highest power is multiplied by a negative number, then y will be very large and negative. For example, for the funtion y = -x3 + 2x +1, as x becomes very large and positive, y becomes very large and negative, so the graph heads off downwards to the right after its last crossing point on the x-axis.

5. What happens as x approaches negative infinity? Again, think about what happens when x is very large and negative. This is a little more complicated because you also have to think about whether the highest power is odd or even. A negative value raised to a even power is positive, whilst a negative value raised to an odd power is negative. For example, when y = -x3 +2x + 1, as x becomes very large and negative, y becomes very large and positive. Here, x3 is negative when x is negative, but because x3 is multiplied by -1, y will be very large and positive when x approaches negative infinity.

6. When x is zero, what is y? It is always good to mark the y-intercept on your graph - just put x = 0 into the graph equation to find the value of the y-intercept.

Using all the information above, start your sketch. I'd usually start by marking the roots on the x-axis, then mark your turning points and join them up. Remember to only draw turning points you have found using the first differential - don't add any in by accident!

Rose A. A Level Physics tutor, A Level Maths tutor, GCSE Chemistry tutor

1 year ago

Answered by Rose, an A Level Maths tutor with MyTutor

Still stuck? Get one-to-one help from a personally interviewed subject specialist


Abdullah D. A Level Maths tutor
View profile
£20 /hr

Abdullah D.

Degree: Mechanical Engineering (Bachelors) - Birmingham University

Subjects offered: Maths


“I am currently beginning my first year at the university of birmingham, studying mechanical engineering. I have two younger brothers aged 10 and 17 whom i tutor on a regular basis. i enjoy teaching them and see my self as a patient te...”

MyTutor guarantee

PremiumGiulio P. GCSE Maths tutor, A Level Maths tutor, A Level Economics tu...
View profile
£30 /hr

Giulio P.

Degree: Mathematics (Masters) - Bristol University

Subjects offered: Maths, Physics+ 3 more

Further Mathematics

“Congratulations on completing your exams! I hope they have all gone well. I am offering tutoring throughout this summer and the academic year for any pupil who wants a headstart before the term begins again...”

Guy P. GCSE Maths tutor, A Level Maths tutor, A Level Further Mathema...
View profile
£20 /hr

Guy P.

Degree: Mathematics (Masters) - Warwick University

Subjects offered: Maths, Further Mathematics + 2 more

Further Mathematics

“About:Hi. I am a 2nd Year Mathematics student at the University of Warwick. I achieved a comfortable First in Year 1 and have continued this trend into my second year. Even from an early age, I have had a burning passion to engage m...”

About the author

Rose A. A Level Physics tutor, A Level Maths tutor, GCSE Chemistry tutor
View profile
£20 /hr

Rose A.

Degree: Physics (Masters) - Oxford, Keble College University

Subjects offered: Maths, Physics+ 1 more


“Top tutor from the renowned Russell university group, ready to help you improve your grades.”

MyTutor guarantee

You may also like...

Posts by Rose

How do I sketch a graph of a polynomial function?

Why does current split between branches of a parallel circuit, but voltage remains the same for each branch?

Why doesn't the concentration of products or reactants change when a reaction is at dynamic equilibrium?

Other A Level Maths questions

How do I integrate ln(x)

How do I differentiate y=x^x?

How do I evaluate composite functions?

If (m+8)(x^2)+m=7-8x has two real roots show that (m+9)(m-8)<0 where m is an arbitrary constant

View A Level Maths tutors


We use cookies to improve our service. By continuing to use this website, we'll assume that you're OK with this. Dismiss