Circle C has equation x^2 + y^2 - 6x + 4y = 12, what is the radius and centre of the circle

The equation of a circle is (x-a)^2 + (y-b)^2 = r^2, where (a,b) is the centre of the circle, and r is the radius. To condense our equation into this form we have to use the technique of completing the square, which says that you can write an equation of form x^2 + bx + c in the form (x + b/2)^2 - (b/2)^2 + c. Completing the square for the x terms leaves us with (x-3)^2 - 9, and for the y terms it leaves us with (y+2)^2 - 4, so the equation becomes (x-3)^2 + (y+2)^2 - 13 = 12, add 13 to both sides and we end up with an equation in the form of the circle equation, (x-3)^2 + (y+2)^2 = 25, telling us the centre of the circle is (3,-2) and the radius is 5

HB
Answered by Haren B. Maths tutor

10808 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

a typical question would be a setof parametric equations y(t) and x(t), asking you to find dy/dx and then the tangent/normal to the curve at a certain point (ie t = 2)


Express 9^(3x + 1) in the form 3^y , giving y in the form ax + b, where a and b are constants.


Solve the following inequality and shade the region to which it applies on a graph. 10x(squared) < 64x - 24


f(x) = 2x3 – 5x2 + ax + 18 where a is a constant. Given that (x – 3) is a factor of f(x), (a) show that a = – 9 (2) (b) factorise f(x) completely. (4) Given that g(y) = 2(33y ) – 5(32y ) – 9(3y ) + 18 (c) find the values of y that satisfy g(y) = 0, givi


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning