Prove that 0.565656.... can be expressed as 56/99.

1) Let x=0.565656...

2) Thus 100x=56.565656...

3) Subtracting equation 1) from 2) gives:

99x=56

4) Rearrange for x:

x=56/99, Also x=0.565656... from 1)

Therefore 0.565656...=56/99

DC
Answered by Daanyaal C. Maths tutor

4283 Views

See similar Maths GCSE tutors

Related Maths GCSE answers

All answers ▸

Solve the equation x^2 + 8x = -15


For all values of x, f(x) = (x + 1)^2 and g(x) = 2(x-1). Show that gf(x) = 2x(x + 2) and find g^-1(7)


What is 64^(2/3)?


A particle P of mass 0.4 kg is moving under the action of a constant force F newtons. Initially the velocity of P is (6i – 27j) m s−1 and 4 s later the velocity of P is (−14i + 21j) m s−1 . Find, in terms of i and j, the acceleration of P.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning