Express 3/2x+3 – 1/2x-3 + 6/4x^2-9 as a single fraction in its simplest form.

First it is necessary to notice that 4x^2-9 can be written as (2x-3)(2x+3). To solve this question, you first have to write all the fractions in terms of their lowest common denominator. In this case that is (2x+3)(2x-3). Therefore you have to multiply 3/2x+3 by 2x-3/2x-3 and 1/2x-3 by 2x+3/2x+3. This will leave you with 3(2x-3)-1(2x+3)+6/(2x-3)(2x+3). If you multiply this out you are left with 4x-6/(2x-3)(2x+3). 4x-6 can be rewritten as 2(2x-3), and therefore the 2x-3s cancel out leaving 2/2x+3 which is the final answer.

DS
Answered by Dhian S. Maths tutor

12798 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

How many roots does the equation x^2 = x + 12 have and what are they?


(Core 2) Show that the region bounded by the curve y = 7x+ 6 - (1/x^2), the x axis and the lines x = 1 and x = 2 equals 16


Given a quadratic equation, how do I find the coordinates of the stationary point?


How do I expand a bracket to a negative power if it doesn't start with a 1.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning