Express 3/2x+3 – 1/2x-3 + 6/4x^2-9 as a single fraction in its simplest form.

First it is necessary to notice that 4x^2-9 can be written as (2x-3)(2x+3). To solve this question, you first have to write all the fractions in terms of their lowest common denominator. In this case that is (2x+3)(2x-3). Therefore you have to multiply 3/2x+3 by 2x-3/2x-3 and 1/2x-3 by 2x+3/2x+3. This will leave you with 3(2x-3)-1(2x+3)+6/(2x-3)(2x+3). If you multiply this out you are left with 4x-6/(2x-3)(2x+3). 4x-6 can be rewritten as 2(2x-3), and therefore the 2x-3s cancel out leaving 2/2x+3 which is the final answer.

DS
Answered by Dhian S. Maths tutor

13062 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Factorise completely ( x − 4x^3)


What are the most important trig identities we need to know?


Find the area under the curve of y=1/(3x-2)^0.5 between the limits x=1 and x=2 and the line y=0


a curve has an equation: y = x^2 - 2x - 24x^0.5 x>0 find dy/dx and d^2y/dx^2


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning